Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sustainability ; 15(7):5767, 2023.
Article in English | ProQuest Central | ID: covidwho-2299976

ABSTRACT

Challenges and competition are being faced in higher education. Students' unsatisfactory academic performance and dropouts are obvious problems worldwide. The "student-centered” pedagogy requires universities to pay attention to the needs of students. Research has demonstrated that academic self-efficacy is a positive psychological variable in the prevention of students becoming academically burnt out and withdrawing from their studies. By increasing academic engagement and improving academic performance, academic self-efficacy can reduce the dropout rates. This study attempted to achieve an in-depth comprehension of the nexus between academic self-efficacy and academic achievement among university students and the mediating role of academic engagement in the association between the two. A total of 258 participants were included in the cross-sectional study. The relationships among academic self-efficacy, academic engagement, and academic performance were examined using Pearson correlation coefficients. In order to examine the intermediating role of academic engagement in the relationship between academic self-efficacy and academic performance, a mediation analysis was applied. A favorable and strong correlation among academic self-efficacy, academic engagement, and academic performance was found in this study. Academic self-efficacy can be a direct predictor of academic achievement and can also be an indirect predictor of academic achievement via the intermediating effect of academic engagement. The findings of this study provide theoretical and practical recommendations for university researchers and administrators. The findings confirm the mediating role of academic engagement between academic self-efficacy and academic performance. The results provide universities with evidence for use in the design of projects and programs for the improvement of students' academic performance. Increasing the level of academic self-efficacy and enhancing academic engagement are of utmost importance for university students to maintain and improve their academic performance.

2.
Cell Rep Phys Sci ; 3(10): 101061, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2042210

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can persist in wastewater for several days, has a risk of waterborne-human transmission. The emergence of SARS-CoV-2 variants with increased infection capacity further highlights the need to remove the virus and restrict its spread in wastewater. Here, we report a decoy microrobot created by camouflaging algae with cell membranes displaying angiotensin-converting enzyme 2 (ACE2) for effective elimination of SARS-CoV-2 and its variants. The decoy microrobots show fast self-propulsion (>85 µm/s), allowing for successful "on-the-fly" elimination of SARS-CoV-2 spike proteins and pseudovirus in wastewater. Moreover, relying on the robust binding between ACE2 and SARS-CoV-2 variants, the decoy microrobots exhibit a broad-spectrum elimination of virus with a high efficiency of 95% for the wild-type strain, 92% for the Delta variant, and 93% for the Omicron variant, respectively. Our work presents a simple and safe decoy microrobot aimed toward eliminating viruses and other environmental hazards from wastewater.

3.
Immune Netw ; 22(3): e22, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1924452

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has spread over the world causing a pandemic which is still ongoing since its emergence in late 2019. A great amount of effort has been devoted to understanding the pathogenesis of COVID-19 with the hope of developing better therapeutic strategies. Transcriptome analysis using technologies such as RNA sequencing became a commonly used approach in study of host immune responses to SARS-CoV-2. Although substantial amount of information can be gathered from transcriptome analysis, different analysis tools used in these studies may lead to conclusions that differ dramatically from each other. Here, we re-analyzed four RNA-sequencing datasets of COVID-19 samples including human bronchoalveolar lavage fluid, nasopharyngeal swabs, lung biopsy and hACE2 transgenic mice using the same standardized method. The results showed that common features of COVID-19 include upregulation of chemokines including CCL2, CXCL1, and CXCL10, inflammatory cytokine IL-1ß and alarmin S100A8/S100A9, which are associated with dysregulated innate immunity marked by abundant neutrophil and mast cell accumulation. Downregulation of chemokine receptor genes that are associated with impaired adaptive immunity such as lymphopenia is another common feather of COVID-19 observed. In addition, a few interferon-stimulated genes but no type I IFN genes were identified to be enriched in COVID-19 samples compared to their respective control in these datasets. These features are in line with results from single-cell RNA sequencing studies in the field. Therefore, our re-analysis of the RNA-seq datasets revealed common features of dysregulated immune responses to SARS-CoV-2 and shed light to the pathogenesis of COVID-19.

4.
Cell Res ; 31(8): 847-860, 2021 08.
Article in English | MEDLINE | ID: covidwho-1387284

ABSTRACT

Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.


Subject(s)
Antiviral Agents/metabolism , COVID-19/pathology , Coronavirus Envelope Proteins/metabolism , Respiratory Distress Syndrome/etiology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Apoptosis , COVID-19/complications , COVID-19/virology , Coronavirus Envelope Proteins/antagonists & inhibitors , Coronavirus Envelope Proteins/genetics , Cytokines/metabolism , Disease Models, Animal , Half-Life , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutagenesis, Site-Directed , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Spleen/metabolism , Spleen/pathology , Viral Load , Virulence , COVID-19 Drug Treatment
5.
Adv Mater ; 33(20): e2100012, 2021 May.
Article in English | MEDLINE | ID: covidwho-1173766

ABSTRACT

The COVID-19 pandemic, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused great impact on the global economy and people's daily life. In the clinic, most patients with COVID-19 show none or mild symptoms, while approximately 20% of them develop severe pneumonia, multiple organ failure, or septic shock due to infection-induced cytokine release syndrome (the so-called "cytokine storm"). Neutralizing antibodies targeting inflammatory cytokines may potentially curb immunopathology caused by COVID-19; however, the complexity of cytokine interactions and the multiplicity of cytokine targets make attenuating the cytokine storm challenging. Nonspecific in vivo biodistribution and dose-limiting side effects further limit the broad application of those free antibodies. Recent advances in biomaterials and nanotechnology have offered many promising opportunities for infectious and inflammatory diseases. Here, potential mechanisms of COVID-19 cytokine storm are first discussed, and relevant therapeutic strategies and ongoing clinical trials are then reviewed. Furthermore, recent research involving emerging biomaterials for improving antibody-based and broad-spectrum cytokine neutralization is summarized. It is anticipated that this work will provide insights on the development of novel therapeutics toward efficacious management of COVID-19 cytokine storm and other inflammatory diseases.


Subject(s)
Biocompatible Materials/chemistry , COVID-19/pathology , Cytokine Release Syndrome/therapy , Cytokines/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Biocompatible Materials/metabolism , COVID-19/complications , COVID-19/virology , Cytokine Release Syndrome/etiology , Cytokines/immunology , Cytokines/metabolism , Extracellular Vesicles/chemistry , Humans , Nanoparticles/chemistry , Polymers/chemistry , SARS-CoV-2/isolation & purification
6.
Proc Natl Acad Sci U S A ; 117(44): 27141-27147, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-834980

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the urgent need to rapidly develop therapeutic strategies for such emerging viruses without effective vaccines or drugs. Here, we report a decoy nanoparticle against COVID-19 through a powerful two-step neutralization approach: virus neutralization in the first step followed by cytokine neutralization in the second step. The nanodecoy, made by fusing cellular membrane nanovesicles derived from human monocytes and genetically engineered cells stably expressing angiotensin converting enzyme II (ACE2) receptors, possesses an antigenic exterior the same as source cells. By competing with host cells for virus binding, these nanodecoys effectively protect host cells from the infection of pseudoviruses and authentic SARS-CoV-2. Moreover, relying on abundant cytokine receptors on the surface, the nanodecoys efficiently bind and neutralize inflammatory cytokines including interleukin 6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-CSF), and significantly suppress immune disorder and lung injury in an acute pneumonia mouse model. Our work presents a simple, safe, and robust antiviral nanotechnology for ongoing COVID-19 and future potential epidemics.


Subject(s)
Coronavirus Infections/therapy , Cytokines/antagonists & inhibitors , Nanoparticles/therapeutic use , Pneumonia, Viral/therapy , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus , COVID-19 , Cell Membrane/chemistry , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , HEK293 Cells , Humans , Interleukin-6/antagonists & inhibitors , Mice , Mice, Inbred ICR , Monocytes , Nanoparticles/chemistry , Pandemics , Peptidyl-Dipeptidase A/metabolism , Receptors, Cytokine/metabolism , SARS-CoV-2 , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL